Молекулярная биология

Молекулярная биология

Молекуля́рная биоло́гия — комплекс биологических наук, изучающих механизмы хранения, передачи и реализации генетической информации, строение и функции нерегулярных биополимеров (белков и нуклеиновых кислот).

Содержание

Смежные дисциплины

Возникнув как биохимия нуклеиновых кислот, молекулярная биология пережила период бурного развития собственных методов исследования, которыми теперь отличается от биохимии. К ним, в частности, относятся методы генной инженерии, клонирования, искусственной экспрессии и нокаута генов. Поскольку ДНК является материальным носителем генетической информации, молекулярная биология значительно сблизилась с генетикой, и на стыке образовалась молекулярная генетика, являющаяся одновременно разделом генетики и молекулярной биологии. Так же, как молекулярная биология широко применяет вирусы как инструмент исследования, в вирусологии для решения своих задач используют методы молекулярной биологии. Для анализа генетической информации привлекается вычислительная техника, в связи с чем появились новые направления молекулярной генетики, которые иногда считают особыми дисциплинами: биоинформатика, геномика и протеомика.

История развития

Молекулярная биология исторически появилась как раздел биохимии. Датой рождения молекулярной биологии принято считать апрель 1953 года, когда в английском журнале «Nature» появилась статья Джеймса Д. Уотсона и Фрэнсиса Крика с предложением пространственной модели молекулы ДНК. Основанием для построения этой модели послужили работы по рентгеноструктурному анализу, в которых участвовали также Морис Х. Ф. Уилкинсон и Розалинда Франклин.

Это основополагающее открытие было подготовлено длительным этапом исследований генетики и биохимии вирусов и бактерий.

В 1928 году Фредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок, а нуклеиновая кислота. Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма.

В 50-х годах XX века было показано, что у бактерий существует примитивный половой процесс, они способны обмениваться внехромосомной ДНК, плазмидами. Открытие плазмид, как и трансформации, легло в основу распространённой в молекулярной биологии плазмидной технологии. Ещё одним важным для методологии открытием стало обнаружение в начале XX века вирусов бактерий, бактериофагов. Фаги тоже могут переносить генетический материал из одной бактериальной клетки в другую. Заражение бактерий фагами приводит к изменению состава бактериальной РНК. Если без фагов состав РНК сходен с составом ДНК бактерии, то после заражения РНК становится больше похожа на ДНК бактериофага. Тем самым было установлено, что структура РНК определяется структурой ДНК. В свою очередь, скорость синтеза белка в клетках зависит от количества РНК-белковых комплексов. Так была сформулирована центральная догма молекулярной биологии: ДНК ↔ РНК → белок.

Дальнейшее развитие молекулярной биологии сопровождалось как развитием её методологии, в частности, изобретением метода определения нуклеотидной последовательности ДНК (У. Гилберт и Ф. Сенгер, Нобелевская премия по химии 1980 года), так и новыми открытиями в области исследований строения и функционирования генов (см. История генетики). К началу XXI века были получены данные о первичной структуре всей ДНК человека и целого ряда других организмов, наиболее важных для медицины, сельского хозяйства и научных исследований, что привело к возникновению нескольких новых направлений в биологии: геномики, биоинформатики и др.

См. также

Литература

  • Сингер М., Берг П. Гены и геномы. — Москва, 1998.
  • Стент Г., Кэлиндар Р. Молекулярная генетика. — Москва, 1981.
  • Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. — 1989.
  • Патрушев Л. И. Экспрессия генов. — М.: Наука, 2000. — 000 с., ил. ISBN 5-02-001890-2

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "Молекулярная биология" в других словарях:

  • МОЛЕКУЛЯРНАЯ БИОЛОГИЯ — изучает осн. свойства и проявления жизни на молекулярном уровне. Важнейшими направлениями в М. б. являются исследования структурно функциональной организации генетического аппарата клеток и механизма реализации наследственной информации… …   Биологический энциклопедический словарь

  • МОЛЕКУЛЯРНАЯ БИОЛОГИЯ — исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и др. явления обусловлены …   Большой Энциклопедический словарь

  • МОЛЕКУЛЯРНАЯ БИОЛОГИЯ — МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… …   Современная энциклопедия

  • МОЛЕКУЛЯРНАЯ БИОЛОГИЯ — МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, биологическое изучение строения и функционирования МОЛЕКУЛ, из которых состоят живые организмы. К основным сферам изучения относятся физические и химические свойства белков и НУКЛЕИНОВЫХ КИСЛОТ, таких как ДНК. см. также… …   Научно-технический энциклопедический словарь

  • молекулярная биология — раздел биол., который исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… …   Словарь микробиологии

  • молекулярная биология — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN molecular biology …   Справочник технического переводчика

  • Молекулярная биология — МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и… …   Иллюстрированный энциклопедический словарь

  • Молекулярная биология —         наука, ставящая своей задачей познание природы явлений жизнедеятельности путём изучения биологических объектов и систем на уровне, приближающемся к молекулярному, а в ряде случаев и достигающем этого предела. Конечной целью при этом… …   Большая советская энциклопедия

  • МОЛЕКУЛЯРНАЯ БИОЛОГИЯ — изучает явления жизни на уровне макромолекул (гл. обр. белков и нуклеиновых к т) в бесклеточных структурах (рибосомы и др.), в вирусах, а также в клетках. Цель М. б. установление роли и механизма функционирования этих макромолекул на основе… …   Химическая энциклопедия

  • молекулярная биология — исследует основные свойства и проявления жизни на молекулярном уровне. Выясняет, каким образом и в какой мере рост и развитие организмов, хранение и передача наследственной информации, превращение энергии в живых клетках и другие явления… …   Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»